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Autoimmune diseases have amultifactorial etiology including genetic and environmental factors. Recently, there
has been increased appreciation of the critical involvement of the microbiota in the pathogenesis of autoimmu-
nity, although in many cases, the cause and the consequence are not easy to distinguish. Here, we suggest that
many of the known cues affecting the function of the immune system, such as genetics, gender, pregnancy and
diet, which are consequently involved in autoimmunity, exert their effects by influencing, at least in part, themi-
crobiota composition and activity. This, in turn, modulates the immune response in a way that increases the risk
for autoimmunity in predisposed individuals. We further discuss current microbiota-based therapies.
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1. Introduction

The incidence of autoimmune diseases is estimated at 3–5% world-
wide [1]. Autoimmunity is known to have a genetic component [2,3];
ity from ClinicalKey.com by Elsevier on September 16, 
ion. Copyright ©2021. Elsevier Inc. All rights reserved.
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however, concordance rates of autoimmune diseases in monozygotic
twins are incomplete, rangingbetween 12 and 67% [2], indicating amul-
tifactorial etiology. In addition, the differences in autoimmunity
incidence rates in different ethnic groups and geographical locations
suggest the involvement of environmental factors. Lifestyle, exposure
to infection, and nutrition, were all previously implicated [4]. Recently,
the critical involvement of microbiota in health, as well as in many dis-
eases including autoimmunity, is gaining attention [4]. Accumulating
evidence suggests that the microbiota can be affected by both the envi-
ronment and genetics, while subsequently influencing the human body
with critical implications to our wellbeing [4].

The human microbiome is the genomic collection of the entire
repertoire of human-associated microorganisms, the microbiota. Our
microbiota account for 1–2 kg of our body weight, and is estimated to
outnumber our own cells by an order of magnitude, and our genetic
content by two orders of magnitude [4]. The largest microbial commu-
nity is found in the gut, especially in the large colon where 100 trillion
microbes reside [4]. On a day-to-day basis, this symbiosis is beneficial
in activities including digestion of nutrients, xenobiotic degradation, vi-
tamin production, and protection from pathogens [4].

At times, homeostasis is disturbed, and changes inmicrobial compo-
sition and diversity occur; these shifts are termed dysbiosis. Dysbiosis,
especially in the gut, has been linked in recent years with disease states,
but a direct causal relationship cannot be determined in every case. One
of the first examples linking microbiome composition and disease
occurs in obesity, in which an increased ratio of members of the
Firmicutes phylum versus members of the Bacteroidetes was observed
in both humans andmice. Moreover, in fecalmicrobiota transplantation
(FMT) to germ free (GF)mice (raised under sterile conditions), themice
receiving the “obese” gut microbiota gained more body fat than mice
administered microbiota derived from lean gut [5,6]. Besides obesity,
changes in microbiota profiles have also been linked to a growing list
of diseases such asmetabolic syndrome [7], diabetes [8] andmalignancy
[9]. This connectionwas also demonstrated in autoimmunediseases, in-
cluding systemic lupus erythematosus (SLE) [10], rheumatoid arthritis
(RA) [11], inflammatory bowel disease (IBD) [12], psoriasis [13], multi-
ple sclerosis (MS) [14], celiac disease [15], and Bechet's disease [16].

In this review, we describe evidence connecting microbiome
dysbiosis with autoimmunity; we discuss the potential indirect effects
of genetic and environmental factors on autoimmune pathogenesis
through their effects on microbiota composition and activity.

2. Methodology of microbiome analysis

Our understanding of the microbiome has increased tremendously
due to a series of technical advances. Culture-based methods support
growth of less than 1% of the entire microbial communities under labo-
ratory conditions, whereas next generation sequencing (NGS) tech-
niques allow characterization of entire bacterial communities without
requiring any growth in culture. This process classifies bacterial mem-
bers based on sequencing of conserved regions of the versatile bacterial
16S rRNA gene, amplifying them using universal bacterial primers
(Fig. 1), followed by sequencing and bioinformatic analysis to identify
the species present and their relative abundance. Whole genome shot-
gun sequence analysis further facilitates the identification of microbial
genes, and metatranscriptomics provides an understanding of some of
the functions carried out by these communities [17]. These techniques
are complemented by two relatively new methods, metabolomics and
metaproteomics, which identify the metabolites and proteins of the
microbiome, respectively (Fig. 1).

These advances in technology have enabled the characterization of
the composition of the healthy microbiome, and identification of alter-
ations in disease states. The two major sequencing efforts are concen-
trated at the National Institutes of Health (NIH) Human microbiome
project [18], and TheMetahit project [19]. However, with the increased
recognition of the numerous factors influencing microbial composition
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including geography, diet, and age, recent years have witnessed more
defined sequencing projects dissecting distinct populations; these in-
clude The American Gut, The British Gut, and Eldermet (the elderly mi-
crobiota) [20]. Although themicrobiome also contains viruses, Archaea,
and Eukaryotes, we focus here specifically on the bacterial component.

3. Microbiota composition and autoimmune diseases

The immune system, which co-evolved with the microbiota, has a
complex challenge, on one hand inducing and maintaining tolerance
to indigenous bacteria, while on the other hand, being able to initiate
an effective immune response against potential insults from commen-
sals, pathobionts (normally symbiotic, but pathogenic in the context
of dysbiosis), and external pathogens when crossing the epithelial bar-
riers [21,22].

While the function of the immune system impacts microbial inhab-
itation and activity, as indicated by models in which the activity of the
immune system is compromised (see below) [23–26], the microbiota,
in turn, modulates the development and tunes the function of innate
and adaptive immunity, as demonstrated in models including germ
free (GF) mice [27–29]. For example, presence of the microbiota is re-
quired for the expression of nucleotide-binding oligomerization domain
2 (NOD2) [30] and activity of NLRP6 [31], both associated with the in-
nate arm of the immune system, necessary for bacterial recognition.
The presence of microbiota also affects adaptive immunity, including
peripheral differentiation of T helper (Th) cells, especially of T regulato-
ry (Treg) and T helper 17 (Th17) cells [32]; certain Clostridia species are
associatedwith increased numbers of Treg cells in themouse colon [33],
while segmented filamentous bacteria (SFB) promote the development
of Th17 cells in mice [34]. Some of themechanisms by which the bacte-
ria shape the functions of the immune system are starting to be
revealed, and include the followingfindings [35]: (i)metabolic products
generated from dietary substrates such as short chain fatty acids
(SCFAs), continuously regulate the innate and adaptive immune
function; for example, butyrate regulates macrophage function, and in-
duces differentiation of Treg cells [36,37]. (ii) Some bacterial metabo-
lites have an immunomodulatory effect; the product of several strains
of Bacteroides fragilis (B. fragilis), the zwitterionic polysaccharide A
(PSA), has anti-inflammatory activities, acting through the Toll-like re-
ceptor (TLR) 2. (iii) Microbiota-modulated host metabolites can impact
the activity of immune proteins; for example, themicrobial-modulated-
bile acid component activates the NLR6 [31]. When the homeostasis-
maintaining dialog between the microbiota and the immune system
is harmed, as a consequence of external or internal cue-induced
dysbiosis or immune dysfunction, uncontrolled inflammatory condi-
tions or breakage of the delicate tolerance towards microbiota can
initiate or promote autoimmunity. There is increasing evidence for
the key role of the gut, oral and skin microbiota in the pathogenesis
of systemic and organ-specific autoimmune diseases, as we will de-
scribe below.

3.1. Gut microbiota

The adult gut is home tomore than 1000 bacterial species [38] belong-
ing to the four major phyla, Firmicutes, Bacteroidetes, Proteobacteria and
Actinobacteria, and additional phyla such as Cyanobacteria, Fusobacteria
and Verrucomicrobia [39]. Despite the fact that the fecal microbiome
is often chosen as a representative sample of the gastrointestinal
microbiome, we know today that the microbiome varies quite dramati-
cally along the gastrointestinal (GI) tract (stomach, small intestine and
large intestine). The stomach, which is the most acidic part of the GI
tract, was believed for a long time to be germ free, until the discovery of
Helicobacter pylori changed this paradigm [40]. Today, we are aware of
the existence of a stomachmicrobiota (with the lowestmicrobial biomass
in the GI tract) includingmembers of all fourmajor phyla, with Streptococcus
being the predominant genus, and the other characteristic genera including
sity from ClinicalKey.com by Elsevier on September 16, 
ion. Copyright ©2021. Elsevier Inc. All rights reserved.



Fig. 1. Methods facilitating analysis of the microbiome composition and activities. See text for more details.
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Lactobacillus and Propionibacterium [40,41]. The small intestine, where most
nutrients are absorbed, is the most poorly characterized section of the GI
tract due to difficulty of sampling. Studies have reported a quite variable
small intestinemicrobiota even within individuals over time, but Strep-
tococcus and Veillonellawere consistently detected [42]. The large intes-
tine is home to the densest bacterial community in the GI tract, and is
the site at which undigested dietary compounds are fermented to
SCFA by the microbiota [43]. The large intestine microbiome is com-
posed of five major phyla, Firmicutes, Bacteroidetes, Verrucomicrobia
(mainly the genus Akkermansia), Proteobacteria and Actinobacteria
[44]. Dysbiosis of the gut microbiota is associated with several disease
Downloaded for Anonymous User (n/a) at Tel Aviv University
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states including inflammatory bowel disease— characterized by inflam-
mation at the first barrier line of defense, as well as with many illnesses
atmore distal sites, including other systemic and organ-specific autoim-
mune disorders.

IBD, a chronic relapsing inflammation of the GI, comprises ulcerative
colitis (UC) and Crohn's disease (CD). While UC is confined to the colo-
rectal region and to the mucosal layer of the GI tract, and is thought to
result fromdysregulation of the intestinal immunity involving Th2 cyto-
kines, CD is usually transmural and can occur in any region of the GI
tract, from the oral cavity to the rectum, and can be related to the over-
expression of Th1 cytokines. Other distinctive histological and clinical
 from ClinicalKey.com by Elsevier on September 16, 
. Copyright ©2021. Elsevier Inc. All rights reserved.
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characteristics can be found in each disease, although some overlap be-
tween the two exists [45–49].

The association of gut microbial dysbiosis with IBD pathogenesis is
well established, and is reflected by reduced bacterial diversity, especially
of bacteria with anti-inflammatory functions such as Faecalibacterium,
and in increased levels of Enterobacteriaceae, as Escherichia coli (Fig. 2)
[50]. More than 160 gene variants that confer susceptibility to IBD were
identified in genome-wide association studies (GWAS), including vari-
ants affecting the innate and adaptive immune system [51–54], indicating
that the activity of both arms of immunity is important for maintaining
gut homeostasis.

Several murine models with deficiencies in innate and adaptive im-
mune receptor signaling are characterized by altered microbial compo-
sition [26]. For example, T-bet−/− Rag2−/− mice have altered
microbial communities, which cause UC when transferred into geneti-
cally intact mice in cross-fostering experiments [35,55]. Deficiency in
inflammasome components also increases the susceptibility to intesti-
nal inflammation by induction of ‘colitogenic’ (tending to induce colitis)
dysbiosis [26,56,57]. In this case, similarly to the above example and
other murine models of disease-promoting dysbiosis, transfer of the
dysbiotic microbiota into a wild type host harboring a normal
microbiome, transfers susceptibility to the disease [31]. These examples
suggest that lack of a competent immune response results in impaired
regulation of microbial proliferation and/or virulence. This, in turn, re-
shapes the microbial communities and their functions, with harmful
consequences for the host. Therefore a constant, evolutionary-shaped
Fig. 2. Autoimmune diseases are associated with alterations in microbial composition.
Examples of species that are present at increased (+) or decreased (−) levels at various
anatomic sites in several autoimmune diseases.
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interactive dialog between the host and its microbiota is necessary for
their long-term partnership.

3.2. Oral microbiota

Over 700 bacterial species were identified within the oral cavity
[58]; hence, the oral cavity ranks second in total microbial diversity of
sites in the human body [59]. Within the oral cavity, the microbiota is
found on the tongue, buccal folds, buccal mucosa, hard palate, soft
palate, gingiva, tonsils, saliva and tooth surface [60]. The human
microbiome project reported that despite the differences in abun-
dances, the majority of sites sampled in the oral cavity contained
Streptococcus, Veillonella, Prevotella and Haemophilus [18]. In addition
to these genera, the gingival plaque samples predominated with the
genus Corynebacterium [18]. Changes in the oral microbiome were
found to be associated with several diseases including oral squamous
cell carcinoma, atherosclerosis, bacteremia and RA [58]. RA is one of
themost common forms of inflammatory arthritis affecting tens of mil-
lions of people worldwide [61,62] and is associated with progressive
disability, systemic complications and early death [63].

The etiology of RA remains elusive, and includes both genetic and
environmental features [64]. Dysbiotic intestinal microbiota is associat-
ed with RA (Fig. 2), and is found in genetically RA-susceptible murine
models [65]. The notion that oral commensals are also involved in initi-
ation or driving of RAprogression is supported by the high occurrence of
periodontal inflammatory disorders in RA patients [66]. Patients with
new–onset of RA exhibit a high prevalence of periodontal disease at
disease onset, despite their young age [67]. The microbiota of the
subgingival biofilm from these patients was found to be similar to that
of patients with chronic RA. About half of untreated new–onset RA
patients, carry Porphyromonas gingivalis (P. gingivalis), twice the preva-
lence in healthy individuals [68]. Moreover, an association between RA-
related auto-antibodies and serum antibody titers against P. gingivalis
was demonstrated in healthy first degree relatives of patients with RA,
suggesting that an immune response to P. gingivalis may play a role in
early onset of RA-related autoimmunity [67,69]. Themechanism under-
lying this association may involve post-translational modifications of
human antigens, for example, citrullination by inflammation-induced
host and/or P. gingivalis peptidylarginine deiminases [70]. This
citrullination of new epitopes may lead to loss of tolerance to self-
proteins in genetically susceptible individuals [71,72]. Interestingly,
dysbiosis was partially resolved following treatment with disease-
modifying anti-rheumatic drugs [62], further stressing the bidirectional
crosstalk between the microbiota and their hosts.

3.3. Skin microbiota

The skin is the largest organ of the human body and one of its main
physical defense barriers. It contains a complex and dynamic ecosystem,
hosting a multitude of microorganisms. Technically, the skin microbiome
is the most challenging microbial milieu to study due to the difficulty of
DNA extraction from a low bacterial biomass [73]. As opposed to the gas-
trointestinal tract, in which the fecal microbiome is representative of a
combination of its segments, the sampled skin at each location is uniquely
affected by its environment. The skin can be divided into sebaceous,moist
and dry sites, each dominated by different bacteria [74]. Members of the
β-Proteobacteria, Flavobacteriales and a Corynebacterium spp. dominate
the microbiota at dry sites. The moist skin sites, such as the Nares and
Axilla, are dominated by the β-Proteobacteria, Flavobacteriales and
Corynebacterium spp. as well, but also contain increased levels of Staphy-
lococcus spp. The sebaceous sites differ from the dry and moist sites, and
are dominated by Propionibacterium [75]. Althoughmost of these bacteria
inhabit the upper part of the epidermis, the stratum corneum, bacteria
may also reside within deeper layers of the skin [76,77].

Psoriasis, a common skin disorder, is characterized by keratinocyte
hyper-proliferation resulting from chronic inflammation promoted by
sity from ClinicalKey.com by Elsevier on September 16, 
ion. Copyright ©2021. Elsevier Inc. All rights reserved.
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Th1, Th17 and Th22 cells [78–80]. The initial presentation and periodic
exacerbations of psoriasis are induced by unidentified environmental
exposures in individualswith genetic predisposition [13]. In a recent ge-
nome-wide association study (GWAS) for psoriasis, the majority of the
associated loci involved genes of the innate immune system [81], but
genes affecting adaptive immune response and epidermal barrier func-
tion were also identified [82]. GWAS indicated variations including
those associatedwith the Th17 axis, the pro-inflammatory transcription
factor NF-κB, and specific allele of the HLA-C of the Major Histocompat-
ibility Complex (MHC) class I [83–86]. There are two current theories of
the nature of the eliciting antigen in psoriasis. One is that the antigen is a
self protein [87,88], and the second suggests that psoriasis is triggered
by dysbiotic microbiota [78] (discussed in [89]). The concept that psori-
asis is caused by an abnormal tolerance to skin commensal bacteria is
strengthened by the high incidence of CD [90] and periodontitis [91]
in psoriatic patients— both, asmentioned above, hypothesized to result
from abnormal tolerance to oral and gut microbiota, respectively [78].
Studies characterizing the microbiota of the psoriatic plaques, two
employing swabs [13,92] and one using biopsies [93], describe modest
shifts in microbial compositions, with differences between studies.
The inconsistency may reflect differences in sampling techniques, pa-
tient demographics, or initial variability between individuals that
masks more substantial changes [75,78]. The clinical significance of
these differences between bacteria profiles in normal and psoriatic
skin is yet to be elucidated, whether it serves as a driving force, perpe-
trating a vicious cycle, or whether it constitutes a secondary response
to changes in the psoriatic skin.
4. Factors affecting both the immune system and the microbiome

While associations between dysbiosis and autoimmunity are
established, little is known about the mechanism underlying this con-
nection, nor its causes or consequences. Bystander activation, epitope
spreading and molecular mimicry were all proposed as mechanisms
through which the microbiota promotes autoimmunity [35]. In the
next section, we will review evidence suggesting that some of the
factors that are known to directly affect the immune system, and
consequently, the risk of autoimmunity, such as genetics, gender,
pregnancy, and diet may also exert their effect, at least partially, by
modulating microbiota profiles and functions (Fig. 3).
Fig. 3. Genetic and environmental factors that may influence autoimmunity, both b
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4.1. Genetics

Genome-wide association studies identified risk loci conferring sus-
ceptibility or resistance to autoimmune disorders [65,94–96]. The most
prominent locus is the MHC, which contains genes encoding class I and
class II molecules aswell as other genes,many of them are related to the
function of the immune system [97]. Some other risk loci such as IL23R
and STAT4, affecting the activity of the adaptive immune response, are
shared among different autoimmune diseases [98]. In addition, single
nucleotide polymorphisms (SNPs) in loci encoding genes that are in-
volved in tuning the strength of antigen receptor signaling in B and T
cells, and also involved in differentiation of Th1, Th17 and Treg cells,
were found in association to autoimmunity.

SNPs in genes governing innate immunity are also associated with
the pathogenesis of various autoimmune diseases, such as polymor-
phism in TLR genes in type 1 diabetes (T1D), RA and SLE [3], and in
the NOD2 gene in CD [49]. The TLR and (NOD)-like receptor (NLR),
are pattern recognition receptors (PRRs) that play a key role in sensing
pathogens and promoting the function of the innate, and consequently,
of the adaptive immune response [26,56].

Studies in human twins have demonstrated the role that genetics
plays in regulating human microbiota profiles [99,100]. For example,
gut microbiota composition of pairs of monozygotic twins are more
similar than that of pairs of dizygotic twins [101]. Genetic variations
were found to be associated with microbiome composition in most
body sites of humans characterized by the Human Microbiome Project
[102]. Several of the immune pathways linked to the genetic variation
associated with microbiome composition are pathways which were re-
ported to be involved in IBD [102]. IBD, psoriasis and periodontal dis-
eases, as mentioned above, are probably induced by inappropriate
response to normal microbiota, and these diseases seem to be associat-
ed with similar genetic variations [103].

Studies inmice have also shown an association between host genetic
background and gut microbiota profiles [23,25,104,105], and indicated
that some of the genes affecting microbial composition are involved in
susceptibility to autoimmunity. Deficiency in pattern recognition recep-
tors (PRRs) such as TLR5 and NOD2 alter the gut communities [26,56].
TLR-5 is the cell surface receptor for bacterial flagellin, and is expressed
on intestinal epithelial and dendritic cells. TLR5-dependent induction of
anti-flagellin antibodies prevents commensal interactionwith the intes-
tinal mucosa by limiting bacterial motility, and therefore reduces
y directly affecting immune function, and indirectly, through the microbiota.
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crossing of the gut epithelial barrier [106,107]. Tlr5-deficient mice have
increased susceptibility to colitis in a microbiota-dependent manner
and the phenotype can be transferred to germ free mice by fecal trans-
plantation from these mice [106–108]. NOD2, which is expressed
mainly in Paneth cells of the small intestine, negatively regulates the
proliferation of commensal microbiota, for example by regulation of
the expression of anti-microbial β-defensins, which are known to be in-
volved in shaping the microbial milieu [26,30,109,110]. Mutations and
SNPs in the human gene encoding NOD2 have been linked to a multitude
of inflammatory diseases including CD [111–113]. Several NLR proteins
form the inflammasome, a cytoplasmic complex,whose activation leads
to maturation of the pro-inflammatory cytokines, IL-1B and IL-18 [114].
Deficiency of the NLRP6 inflammasome subset inmouse colonic epithe-
lial cells results in dysbiosis, predisposing the mice to IBD [57].

In summary, ‘Genetic dysbiosis’ [103], the effect of genetics on the
microbial composition, is probably the result of the impact of the genet-
ic variation on the recognition and responsiveness of the immune system
to the microbiota. Misrecognition and inappropriate response to these
bacteria can lead to dysbiosis, which in turn,may play a role as an initiator
or perpetuator of autoimmune disease in a genetically susceptible indi-
vidual, in the presence of predisposing environmental factors [103].
Therefore, distinct genetic profiles can impose autoimmunity-prone or
autoimmunity-protective microbial compositions, which may dictate
host susceptibility to autoimmunity.
4.2. Gender

Female gender is known to be a risk factor for several autoimmune
diseases, as in the cases of RA (female:male ratio 3:1–4:1), systemic
sclerosis (SSc, 3:1–4:1) and SLE (9:1) [115–118]. The explanation is pos-
sibly derived from the differences between men and women with re-
spect to sociologic characteristics (discussed elsewhere) [119], as well
as sex chromosomes [120] and sex hormones [118,121]. Observations
in humans demonstrated an increased risk for autoimmunity endowed
by the presence of an extra X chromosome [122], independent of go-
nadal hormone production [120]. The expression of several X-linked
genes involved in the immune response [123,124] can theoretically af-
fect the development of autoimmunity [116]. Sex hormones themselves
play a key role in the function of both the innate and adaptive immune
response [65,118,121,125]. Estrogens can enhance the immune re-
sponse, while androgens and progesteronemay downregulate it. There-
fore, although the effects of these hormones as immunomodulators are
more complex than presented here, the general increased immunocom-
petence in femalesmay render themmore susceptible to autoimmunity
[118,125].

The association of increased rates of gingival inflammation with peri-
odical elevation in female hormonal levels, suggested the notion that sex
steroids play an etiological role by altering the subgingival bacterial com-
munity [126]. Early investigations suggested that increase in female sex
hormones led to preferential colonization by black-pigmentedBacteroides
(a classification term used to signify a genetically heterogeneous group of
microorganisms that was based on phenotypic characterization). Since
sex hormones exert a predominantly pro-inflammatory effect on the gin-
giva, it was difficult to dissect the direct effects of female sex steroids on
bacteria from indirect effects on the immune response [126]. More recent
human data demonstrated that life cycle stages associated with rapidly
changing female hormonal levels, such as puberty [127] and pregnancy
(see below) [128] are followed by alterations in intestinalmicrobiota pro-
files. In infancy, themicrobiotas of opposite-sex dizygotic twinpairs are as
similar to one another as the microbiota of same-sex dizygotic twin pairs
[127]. After puberty, the microbiotas of opposite-sex twins are more di-
verse in comparison to the same-sex twins [127]. Thus, the hormonal
changes during pubertymold sex-specificmicrobiome profiles. However,
studies reporting specific gender associations of the gut [129–132] or skin
[75] microbiome compositions in healthy humans in the general
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population are inconsistent, and it is difficult to interpret causality versus
consequence [129–132].

The term “microgenderome” has recently been used to describe the
gender-related microbial differences leading to the development of au-
toimmunity in the non-obese diabetic (NOD) mouse model of T1D
[133]. Although the microbial communities of weanling NOD males
and females are indistinguishable from each other, sex-specific differ-
ences in microbiome composition become evident at puberty, and are
most apparent in adult mice. Germ free NODmice do not exhibit a gen-
der bias in development of diabetes [134,135]. However, gender bias
under SPF conditions occurs more often in females, and can be reversed
via transfer of gut microbiota from males. Transfer of gut microbiota
from adult males to immature females altered the microbiota of the re-
cipient female, resulting in elevated testosterone and protection from
T1D. These effects were dependent on androgen receptor activity
[125,134]. There are several examples of steroid biosynthesis by bacte-
ria, but not by gut commensal species [136]; therefore it is possible
that the effect of male gut microbiota on testosterone level is indirect
[125]. Based on the lack of a strict correlation between the amount of in-
ducible testosterone and protection from T1D, it was suggested that
once a testosterone threshold is achieved, the sex-restricted signals
from the microbiota can determine whether disease will occur [135].
Thus, androgen enhancement by microbiota is not sufficient to explain
the gender bias in T1D development, and the microbiota could contrib-
ute in an additive fashion to other effector mechanisms, for example by
increasing the production of IFNγ in the pancreatic lymphnodes, a cyto-
kine with suggested inflammatory-limiting function under this biologi-
cal context.

All together, the data so far suggest that the gut microbiomemay in-
teract with sex hormones to modulate sex-biased disease onset and
progression [65,137]. The feedback loop between sex hormones and
gut microbes shapes a microbial community that can affect autoimmu-
nity by triggering an inflammatory or tolerogenic input. It is not yet
known whether sex-associated characteristics can directly affect the
microbiota composition, and consequently, the risk for autoimmunity,
or whether these factors affect the microbiota indirectly through initial
instruction of the function of the immune system.

4.3. Pregnancy

During pregnancy the immune response is modulated in a systemic
manner, andmore effectively, at thematernal–fetal interface [138]. The
dynamic of immunological changes during pregnancy probably follows
the pattern of hormonal expression. i.e., as mentioned above, placenta-
derived hormones, estrogens, and progesterone can directly affect the
activity of immune cells [139,140]. The estrogens have dual effects;
they promote an immune response at normal levels, but have anti-
inflammatory functions at elevated concentrations, as in pregnancy
[141]. Progesterone, in general, possesses immunosuppressive effect
as in the induction of the differentiation of cord blood fetal T cells into
Treg cells, and promotion of the dominant Th2 response during preg-
nancy [138]. This Th2 skewing may explain why some Th1-associated
autoimmune diseases, such asMS and RA, are ameliorated during preg-
nancy. The onset of MS typically takes place during the childbearing
years, and hence commonly during pregnancy. Pregnant women with
MS typically have reduced relapse rate in the latter half of pregnancy,
whereas soon after the delivery, disease activity returns, often at greater
severity than in pregnancy [142]. The reasons for this increased activity
are not entirely clear, but the decrease in estrogen levels and the loss of
the immunosuppressive state of pregnancy are likely to be involved
[140]. In the case of RA, two-thirds of pregnant patients also experience
an improvement in their RA disease activity [143]. For SLE, which is a
more heterogeneous disease, the changes in the disease state during
pregnancy appear to be more varied [144–147].

An appropriate balance between Treg and Th17 cells is also crucial
during pregnancy. Treg cells have a critical role in maintaining immune
sity from ClinicalKey.com by Elsevier on September 16, 
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tolerance to self-antigens and towards the semi-allogenic fetus
[148–151]. The percentage of fetal Treg cells correlates closely with
thepercentage ofmaternal Treg cells, suggesting thatwithin the context
of pregnancy, the Treg cell compartment of the maternal and fetal im-
mune system is tightly interrelated [152,153]. Treg and Th17 cells
have some opposing actions; in the context of autoimmunity, Treg
cells have a role in suppressing the autoimmune response, while Th17
promotes inflammation and autoimmunity [148]. Several clinical stud-
ies suggest that the expansion of Treg cells during pregnancy mediates
protection fromMS and RA [149]. Indeed, it has been shown in patients
with RA that the number of Treg cells duringpregnancy, is inversely cor-
related with disease activity in the third trimester and after delivery
[154]. Many other immunoregulatory factors such as cytokines,
adipokines, Fas-ligand, indoleamine 2,3-dioxygenase, and pregnancy-
specific serum proteins such as HLA-G probably influence the success
of pregnancy, but also the pathogenicity of autoimmune disorders
[140,149].

Accumulating evidence suggests major changes in the microbiota of
pregnant women [128,155,156]. Pregnancy is accompanied by changes
in the bacterial load and composition in the GI tract [128,157]. The phy-
logenetic α-diversity (within an individual) decreases with advancing
pregnancy, while the β-diversity (between individual variation) is in-
creased in the third trimester. The third trimester is also characterized
by elevatedpresence of Proteobacteria andActinobacteria phyla, resem-
bling the dysbiotic profile of inflammatory diseases [128]. Indeed, pro-
inflammatory cytokines, such as IFNγ, IL-2, IL-6, and TNFα, are more
abundant in the third trimester stool relative to the first trimester
[128]. GFmice receiving third trimestermicrobiota gainedmoreweight,
had greater low grade inflammation and insulin resistance in compari-
son to GF mice receiving the gut microbiota from women in their first
trimester, indicating the casual role of the pregnancy-associated micro-
biota in the pro-inflammatory environment in the last period of preg-
nancy [128].

The vaginal microbial community also has a unique structure during
pregnancy [156]. Pregnancy was found to be associated with an overall
decrease inα-diversity accompanied by enrichment of Lactobacillus and
members of the Clostridiales, Bacteriodales, and Actinomycetales [155].
The richness of some of these species including Lactobacillus jensenii
may have clinical significance, as these anaerobic bacteria contribute
to the acidic vaginal environment [156]. Nevertheless, it is unclear
whether changes in the microbial composition in the vagina or GI
tract are beneficial to the pregnant mother or to fetal development, or
alternatively, reflect a strategy employed by certain bacteria to increase
their fitness for vertical transfer to the next generation. It is also unclear
whether the changes in the microbial composition in pregnant women
are a result of a direct recognition of the pregnancy-associated hormon-
al milieu by the bacteria, or a consequence of an indirect bacterial reac-
tion to pregnancy-associated alterations in immune function, or both.
Nevertheless, the resulting dynamic changes in microbial composition,
can affect the function of the maternal immune system, and conse-
quently, her autoimmune response. Deciphering the correlation be-
tween specific microbial compositions and specific autoimmune
diseases may be of great importance for developing novel diagnostic
and therapeutic approaches.

Evidence strongly suggests that the maternal microbiota during
pregnancy has long-lasting effects on the offspring'smicrobial structure,
and subsequently on its susceptibility to disease. It was demonstrated
that the neonatal microbiome can differ based on the delivery mode
[156,158]. Cesarean section deliveries are associated with a 20–30% in-
crease in autoimmune disorders and childhood obesity [158], as shown
in meta-analyses of observational studies [159,160]. Higher risk for al-
lergy and celiac disease was also related to Cesarean section [161].
Therefore the altered bacterial colonization after Cesarean section prob-
ably causes the critical window of opportunity for optimizing the im-
mune response to indigenous or pathogenic bacteria to be missed
[162,163].
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While critical for normal development, the exact timing of coloni-
zation of the pioneer microbiome in the neonate is unknown. The
prevailing dogma of the sterile intrauterine environment during nor-
mal term pregnancies has been challenged [153,164–167]. In situ hy-
bridization with specific probes for bacterial DNA have detected
bacteria in the fetal membranes of up to 70% of women undergoing
elective Cesarean section at term [165,168–170]. Furthermore, se-
quencing studies have identified a ‘placental microbiome’ present in
normal healthy pregnancies [171]. The placental microbiome profiles
were most similar to the oral microbiome, although whether and how
the bacteria translocate from the mouth and other parts of the GI
tract, or from additional sites harboring microbiota such as the skin
and vagina, to the placenta is still poorly understood [166].

Nevertheless, the potential importance for this in utero colonization
in modulating disease susceptibility is now more fully appreciated
[172–174]; antibiotic treatment during pregnancy is associated with
asthma in the offspring [175], and prenatal supplementation seems to
be crucial for the preventive effect of probiotics on infant eczema [173,
174]. Recently, it was shown that the maternal microbiota of pregnant
female mice shapes the intestinal mucosal lymphoid and mononuclear
cells of the innate immune system, and programs the intestinal tran-
scriptional profiles of the offspring to increase expression of genes asso-
ciated with microbial interactions [176]. Some of these changes were
dependent on the presence of maternal antibodies that transfer
microbiota-derived compounds to the fetus. Altogether, it seems that
the window of opportunity for educating the immune system to re-
spond appropriately to pathogens and commensals after birth, begins
within the fetal period [166,177–182].
4.4. Nutrition (diet)

Dietary factors are believed to be among the triggers for autoim-
mune disease [183]. This is reflected by the differential distribution
of autoimmune diseases along the lines of ethnicity and geography,
for which culture-based dietary differences are partially responsible
[183,184]. The hallmark for the effects of nutrition on autoimmunity
is the induction of Celiac disease following ingestion of gluten [185].
A gluten-free diet is known to improve Celiac disease symptoms,
even its rheumatic manifestations [186]. Other examples include
early exposure to cow's milk, increased iodine consumption in
Japanese diets, and our Western diet enriched with fat and sugar,
which were previously implicated in the pathogenesis of T1D, auto-
immune thyroiditis and IBD, respectively [183]. Diet also has an ob-
vious and strong direct effect on the microbiota composition, and
studies investigating microbiomes of subjects from different geo-
graphic locations that are each associated with a typical diet
(e.g., Burkina Faso vs. Italy, Malawi and Amerindians vs. USA)
found highly distinct microbial compositions, attributed to dietary
variability [127,187]. The strong effect of diet is evident during the
first years of life when different foods are introduced for the first
time. An infant time series demonstrated not only how diet
influences the establishment of the infant microbiota, but also
demonstrated how the bacterial metagenome changes to enable me-
tabolism of the new dietary components [188]. Recent studies dem-
onstrated the immediate effect of Western diet and processed foods
on the gut microbiota. The use of dietary emulsifiers was shown to
cause the microbiota of GF mice to change in a manner resembling
metabolic syndrome [189]. Similar harmful effects were also shown
to be caused in mice by artificial sweeteners [190].

In conclusion, diet is the factor with the quickest impact on the
microbiome composition and we are recently learning how certain
components of a given diet which affect the microbial composition
also affect the predisposition to autoimmune disease. Could the
microbiome be the link through which a person's diet affects his/hers
health remains to be elucidated.
 from ClinicalKey.com by Elsevier on September 16, 
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5. Microbiota-based therapies of autoimmune diseases

Since, as described above, accumulating data associates themicrobi-
ota with initiation or progression of autoimmune disease, in the follow-
ing section,we suggest approaches bywhichmodulating themicrobiota
might change disease outcome.
5.1. Probiotics

Understanding the role of dysbiosis in autoimmunity pathogenesis
has led to attempts to manipulate the gut microbiome, hoping to re-
equilibrate its homeostasis and to thereby promote disease remission.
Such therapeutic modalities include the use of selected strains of live
bacteria (probiotics) or fecal microbiota transplantation (FMT). The fu-
ture holds great promise for the use of probiotics as disease interven-
tions. Currently, research into the role of probiotics in treatment of
autoimmune diseases has focused mainly on IBD. The results of these
studies to date are not conclusive, and while some studies show ex-
tremely promising results others report no effect. For example, VSL#3,
a probiotic product with a putative immune regulatory role [191] con-
taining four strains of Lactobacilli, three strains of Bifidobacteria, and
one strain of Streptococcus salivarius subsp. Thermophilus, promoted re-
mission in mild to moderate UC, with responses as high as 77% [192].
The exact mechanism underling this remission is not clear but may
involve the induction of the anti-inflammatory cytokine IL-10 by
Bifidobacterium [193]. In CD, however, results of probiotic treatment
have been less encouraging. Schultz et al. found no benefit from the
use of Lactobacillus GG in initiation or maintenance of medically-
induced remission in CD [191,194]. Furthermore, no effect on re-
currence in children, nor on post-operative recurrence was noted
after the use of L.GG, and Lactobacillus acidophilus, respectively
[191].

The use of FMTwas described as early as the 4th century by the Chi-
nese in order to cure diarrhea [195]. Inmodernmedicine, the use of FMT
was recently approved for the treatment of Clostridium difficile infection
[195]. The rationale behind this treatment is restoration of the microbi-
ota by transplanting the gutmicrobiota from a healthy donor. The use of
FMT as a therapeutic modality for autoimmune diseases has been sug-
gested, and studied mainly for IBD. A recentmeta-analysis of 18 studies
evaluated FMT efficacy in IBD patients. Results demonstrated that 45%
of IBD patients receiving FMT achieved clinical remission [196]. Still,
the field of FMT for IBD is still in its infancy so that the different studies
are heterogeneous in the methodologies used.
5.2. Antibiotics

Antibiotics are probably the most obvious way to manipulate the
microbiome. Antibiotics have been prescribed as a therapeutic option
since the initial association was shown between bacterial infections
and several autoimmune diseases [197–199]. The literature reports sev-
eral studies regarding the use of antibiotics to treat autoimmune dis-
eases, but this should be done cautiously as their anti-bacterial activity
is not specific, and in some cases has even been shown to cause disease
states to worsen [200,201].

A good example of how antibiotics might improve autoimmune
disorders is the eradication of H. pylori. In immune thrombocyto-
penic purpura (ITP), antibiotic-mediated eradication of H. pylori
was found to increase platelet count recovery [202] and was also
reported to be beneficial in RA, as disease activity and markers,
such as erythrocyte sedimentation rate, fibrinogen and anti-
nuclear antibody titers, were lower in treated RA patients [203].
There are several other examples summarized elsewhere [199]
supporting the potential therapeutic effect of antibiotics in auto-
immune diseases.
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6. Conclusions

The complex interaction between the human body and its
microbiome affect our health and disease, as presented here in the con-
text of autoimmunity. Unraveling the exact mechanisms by which
dysbiosis participates in the pathogenesis of autoimmune diseases
may facilitate the identification of populations at risk, and enable the
development of new approaches for patient-tailored early intervention.
Therefore, characterization and manipulation of the autoimmunity-
associated microbiome may have a great potential as diagnostic and
therapeutic tools, respectively.
Take-home messages

• Some of the known cues affecting the function of the immune system,
such as genetics, gender, pregnancy and diet, which are consequently
involved in autoimmunity, exert their effects by influencing, at least in
part, the microbiota composition and activity.

• Characterization and manipulation of the autoimmunity-associated
microbiomemay have a great potential as diagnostic and therapeutic
tools.
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